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Abstract

Atrial fibrillation (AF) is our society’s most common
cardiac arrhythmic disease, leading to increased morbid-
ity and mortality. Predicting AF episodes during sinus
rhythm based on electrocardiograms (ECGs) allows timely
interventions. It is known, that changes in selected ECG
morphology features are a predictor for the onset of AF,
but no systematic investigation of different ECG features’
temporal changes has been performed so far. We split sinus
rhythm episodes of 60 minutes preceding AF from the MIT-
BIH AF database into segments of 5 minutes with 50%
overlap (n = 644) and calculated 155 features of differ-
ent domains per segment. Logistic regression analyses be-
tween the segments preceding AF and others revealed the
most significant effects for segments ending 5 minutes be-
fore AF onset, with PQ interval slope (p < 0.01), PQ inter-
val correlation (p < 0.05), and median RR time (p < 0.05)
being the most relevant features. A decision tree ensem-
ble, trained with all features, achieved an accuracy of 0.87
when distinguishing 8 segment clusters. Our results con-
firm expected changes in ECG features (e.g., PQ inter-
val) before AF episodes, indicating impaired atrial exci-
tation, and show that the combination of interpretable fea-
tures is sufficient to discriminate at different points in time
before AF onset. For advanced analyses, more extensive
databases should be included.

1. Introduction

Atrial fibrillation (AF) is the leading cardiac arrhythmic
disease globally, leading to increased morbidity and mor-
tality [1,2]. Paroxysmal AF occurs in episodes of less than
seven days but often becomes persistent. With early detec-
tion of AF episodes, interventions can avoid chronification
and decrease morbidity and mortality, which is why pre-
dicting AF episodes during sinus rhythm based on electro-
cardiograms (ECGs) is highly important.

The transition from normal sinus rhythm to AF is not
fully understood but is often associated with changes in
atrial electrophysiological properties and thus with discon-

tinuous atrial pacing [3]. Therefore, we hypothesize that
there is increased variability in beat morphology and heart
rate before the onset of AF. It is already known that the
variability in P wave duration increases before AF onset
[4]. However, to our knowledge, the temporal course of
different features describing other characteristics has not
yet been investigated. Therefore, we examine the temporal
change before AF onset and the predictive value of various
interpretable ECG features from different domains.

2. Methods

To examine the predictability of AF using interpretable
features, we split normal sinus rhythm episodes that pre-
ceded AF and calculated features of different domains for
each segment. Using logistic regression, we studied the
relevance of each feature to discriminate between the seg-
ment before the AF onset (preAF) and those further ahead.
Furthermore, we trained a decision tree ensemble to inves-
tigate the predictive value of combined features. Figure 1
shows the processing and validation pipeline. The imple-
mentation was entirely done with Matlab R2021b (Math-
Works Inc., Natick, MA, USA).
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Figure 1. Pipeline for feature extraction and validation.
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2.1. Data

We used the first lead of the MIT-BIH AF database [5,6]
containing 23 long-term two-leads ECGs (10 hours each)
with AF episodes of primarily paroxysmal AF and rhythm
annotations. The database included 274 sinus rhythm
episodes of 21 subjects preceding AF. As a trade-off be-
tween period size and data set size, we only used sinus
rhythm episodes of at least one hour in length. From each
of the remaining 28 episodes, we extracted 23 segments
with a duration of 5 minutes and 50% overlap, concluding
with the onset of AF.

2.2. Preprocessing

All ECGs were high-pass and notch filtered at 0.05 Hz
and 60 Hz, respectively, with previous zero-padding to
avoid boundary effects. In filtered ECGs, noisy parts were
detected [7] and ignored for QRS detection [8] with sub-
sequent QRS correction, based on amplitude heights and
signs as well as peak-to-peak and peak-to-signal edge dis-
tances [9].

2.3. Feature Extraction

We extracted 155 features of different domains, includ-
ing 27 heart rate variability (HRV) features, 113 morphol-
ogy features and 15 signal quality indices.

2.3.1. Heart Rate Variability Features

We extracted RR intervals from consecutive QRS com-
plexes, filtered physiological and non-physiological RR in-
tervals, and added the filtration ratio (filt rate) to the feature
set. The physiological RR intervals were used to calculate
standard heart rate metrics, including mean, median, mini-
mum, and maximum, and statistical, geometric, non-linear,
and frequency-based HRV features [10].

2.3.2. Morphology Features

To extract morphological features, we extracted beats bj
according to [11] between onset

tbonj =

{
tRj − 370ms, RR ≥ 500ms
tRj

− 1/2RR, RR < 500ms
, (1)

which was fitted to be dependent on RR, and offset

tboff
j

=

{
tRj+1

− 240ms, RR ≥ 720ms
tRj

+ 2/3RR, RR < 720ms
, (2)

where RR is the length and tRj
is the location of R peak

j. The beats were averaged to create a template beat, and

fiducial points were detected using the ECGdeli toolbox
[12]. Subsequently, we extracted the height, length, base-
line slope, area, and skew of the P and T waves, as well as
the QRS complex. Length and slope were also determined
for the PQ and QT intervals.

To consider morphological beat-to-beat changes, we
calculated the mean, median, and standard deviation (SD)
between beats of the same feature, using two-dimensional
signal warping [13]. Furthermore, we extracted standard
QT interval variability (QTV) features, including SD of
QT intervals and the QTV index (QTVi) as well as the
T wave amplitude corrected measures cQTV, cSDQT, and
cQTVi [14]. Additionally, we used the mean, median, min-
imum, and maximum QT length. In total, we received 22
template features and 91 beat-to-beat features.

2.3.3. Signal Quality Indices

We considered the signal quality entity by applying dif-
ferent SQIs from the fecgsyn toolbox [15] to the complete
but filtered signals.

2.4. Validation

We performed logistic regression analyses for each seg-
ment versus preAF for each feature separately after remov-
ing the baseline and outliers. The baseline was defined fea-
ture dependent as the mean of the three segments closest
to AF, and outliers were defined as values that were more
than three scaled median absolute deviations away from
the median, using the Matlab function isoutlier.

Furthermore, we examined the predictive value of fea-
ture combinations using decision tree ensembles based
on the GentleBoost algorithm. To reduce the number
of classes, we clustered segments as shown in Figure 2,
with the cluster size increasing with distance from the AF
episode. We set the learning rate to 0.1 and the number
of bins to 256. To determine the optimal model design,
we applied a grid search, varying the number of learners
between 128 and 768 and the number of splits between
2 and 4. The models were validated using 10-fold cross-
validation and the following measures: accuracy, the area
under the precision-recall curve (AUPRC), and F1.
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Figure 2. Clusters of segments, between 60 minutes be-
fore atrial fibrillation (AF) to the segments preceding AF
(preAF), for training the decision tree ensemble.
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3. Results

Logistic regression analyses showed the greatest num-
ber of significant (p < 0.05) effects for segments that
ended 5 minutes before AF onset (n = 21), followed by
segments that ended 7.5 (n = 18), 40 (n = 18), and
42.5 (n = 19) minutes before AF onset. Other segments
showed significant effects but less frequently.

Maximum RR (n = 15) and the HRV feature of approx-
imate entropy (n = 13) were the most relevant features,
according to the number of significant segments.

For segments that ended 5 minutes before AF onset, PQ
interval slope (p < 0.01), median PQ correlation (p <
0.05), and median RR time (p < 0.05) were indicated as
most relevant (see Table 1). However, we found significant
effects for all domains’ features, dominated by P/QRS/T
wave features, with the frequency bands’ relative power of
5-20 Hz to 5-45 Hz (p-SQI) being the only SQI.

Table 1. Features for which logistic regression found sig-
nificant differences between segments ending five minutes
before versus just before the AF onset, with feature do-
mains highlighted by color and the sign of slope between
both segments. Standard deviation is abbreviated by SD.

Rank Feature Metric p value Sign of
slope

1 PQ slope 0.004 +
2 PQ correlation median 0.011 +
3 RR median 0.012 +
4 P area-to-length mean 0.014 +
5 QRS area slope median 0.017 -
6 QRS area slope mean 0.017 -
7 PQ correlation mean 0.018 +
8 T height mean 0.019 +
9 T height 0.020 +

10 QRS area slope 0.027 -
11 T baseline slope SD 0.029 +
12 QRS area slope SD 0.030 -
13 RR maximum 0.031 +
14 PQ slope mean 0.031 +
15 RR mean 0.035 +
16 P area 0.036 +
17 T height median 0.040 +
18 QRS area-to-length 0.041 +
19 T area 0.045 +
20 P area-to-length median 0.046 +
21 p-SQI 0.048 -

Legend: Heart rate variability (HRV); Morphology: Template,
Beat-to-beat; Signal quality indices (SQIs)

According to the grid search (see Figure 3), the clas-
sification performance for each lead set increases with
model complexity up to a certain point. The optimum was
achieved with 640 learners and 4 splits (accuracy = 0.87;
F1 = 0.45; AUPRC = 0.35).

For both settings, classifying all clusters or only preAF
versus the rest, HRV, beat-to-beat, and SQI features were
among the ten most relevant features (see Figure 4) with an
overlap of 6 out of 10. Template-based features were rep-

resented only once with the P wave baseline’s slope for all
clusters and not for preAF versus the rest. Besides beat-to-
beat P wave and PQ interval features, the most important
features were dominated by HRV features, including the
HRV index, which is the ratio of the SD to the mean of the
heart rate and the median RR interval [10]. In addition to
the SD along the identity line (SD2) and its perpendicular
(SD1) from the Poincaré plot, the dominant HRV features
furthermore include the density of low frequencies (LF),
very low frequencies (VLF), and high frequencies (HF) as
well the proportion of HF (pHF) from the interpolated RR
tachogram [10].

4. Discussion and Conclusion

The dominance of P wave and PQ interval features in
both analyzes confirms the assumption of altered electro-
physiological properties in the atrium. However, particu-
larly for the classification, HRV and beat-to-beat features
of T wave and QRS complex were relevant, indicating that
self-terminating circling excitations occur shortly before
the onset of AF. Circling excitations lead to a superimpo-
sition of all beat characteristics with F waves and an irreg-
ular transmission of the excitation to the ventricles, which
is reflected in an increased heart rate (variability). This is
supported by the increase in median, mean, and maximum
RR to preAF as indicated by the sign of slope in Table 1.

Using the decision tree ensemble, we achieved decent
accuracies of up to 0.87 in distinguishing between differ-
ent clusters of segments. F1 score and AUPRC, on the
other hand, were lower, which is because our classifier has
high specificity but low sensitivity. That means the rate of
correctly as others classified segments is high, but the rate
of correctly classified correct segments is low.

Reasons for this can be the small data set, from which
we could only use 28 episodes, and the sampling frequency
below the recommendation for extracting morphological
features. Furthermore, a visual examination of the signals
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Figure 3. Results of the grid search for different numbers
of learners and splits, including accuracy, F1 score, and
area under precision recall curve (AUPRC).
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Figure 4. Relative importance of the 10 most important
features in classifying all clusters of segments or the seg-
ment preceding AF (preAF) versus the rest.

revealed that episodes annotated as sinus rhythm some-
times contain AF.

Our study demonstrates the potential of feature-based
approaches using machine learning methods for the inter-
pretable prediction of AF from ECG. For this purpose,
however, future studies should include more extensive
databases to verify the value of the respective ECG fea-
tures for AF prediction on an extended time horizon.

Acknowledgments

This study was supported by grants from the European
Union’s Horizon 2020 research and innovation program
(TIMELY, No. 101017424).

References

[1] Chugh SS, Havmoeller R, Narayanan K, Singh D, Rien-
stra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH,
Zheng ZJ, Forouzanfar MH, Naghavi M, Mensah GA, Ez-
zati M, Murray CJ. Worldwide Epidemiology of Atrial Fib-
rillation. Circulation February 2014;129(8):837–847.

[2] Tanaka Y, Shah NS, Passman R, Greenland P, Lloyd-Jones
DM, Khan SS. Trends in Cardiovascular Mortality Related
to Atrial Fibrillation in the United States, 2011 to 2018.
Journal of the American Heart Association August 2021;
10(15):e020163.

[3] Dilaveris PE, Gialafos JE. P-Wave Dispersion: A Novel
Predictor of Paroxysmal Atrial Fibrillation. Annals of Non-
invasive Electrocardiology The Official Journal of the Inter-

national Society for Holter and Noninvasive Electrocardiol-
ogy Inc April 2001;6(2):159–165.

[4] Martı́nez A, Alcaraz R, Rieta JJ. Study on the P-Wave Fea-
ture Time Course as Early Predictors of Paroxysmal Atrial
Fibrillation. Physiological Measurement November 2012;
33(12):1959–1974.

[5] Moody GB, Mark RG. A New Method for Detecting Atrial
Fibrillation Using R-R Intervals. Computers in Cardiology
1983;10:227–230.

[6] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley
HE. Physiobank, Physiotoolkit, and Physionet: Compo-
nents of a New Research Resource for Complex Physio-
logic Signals. Circulation June 2000;101(23):e215–e220.

[7] Datta S, Puri C, Mukherjee A, Banerjee R, Choudhury
AD, Singh R, Ukil A, Bandyopadhyay S, Pal A, Khandel-
wal S. Identifying Normal, AF and Other Abnormal ECG
Rhythms Using a Cascaded Binary Classifier. In 2017 Com-
puting in Cardiology. September 2017; .

[8] Johnson AE, Behar J, Andreotti F, Clifford GD, Oster J.
R-Peak Estimation Using Multimodal Lead Switching. In
Computing in Cardiology 2014. September 2014; 281–284.

[9] Hammer A, Scherpf M, Ernst H, Weiß J, Schwensow
D, Schmidt M. Automatic Classification of Full- And
Reduced-Lead Electrocardiograms Using Morphological
Feature Extraction. In 2021 Computing in Cardiology, vol-
ume 48. September 2021; .

[10] Vollmer M. A Robust, Simple and Reliable Measure of
Heart Rate Variability Using Relative RR Intervals. In 2015
Computing in Cardiology. 2015; 609–612.

[11] Laguna P, Moody GB, Garcı́a J, Goldberger AL, Mark RG.
Analysis of the ST-T Complex of the Electrocardiogram
Using the Karhunen—Loeve Transform: Adaptive Moni-
toring and Alternans Detection. Medical Biological Engi-
neering Computing 1999;37(2):175–189.

[12] Pilia N, Nagel C, Lenis G, Becker S, Dössel O, Loewe A.
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